569423b92270b13b4ea7e2e9e391e145ebdc95bb
sitk-registration-sys
This crate does two things:
- find an affine transform or translation that transforms one image into the other
- use bspline or nearest neighbor interpolation to apply a transformation to an image
To do this, SimpleITK, which is written in C++, is used. An adapter library is created using autocxx to expose the required functionality in SimpleITK. Because of this, compilation of this crate requires quite some time, several GB of memory, up to 50 GB of hard disk space, as well as cmake, a C++ compiler, llvm and git. Use at your own risk!
Examples
Registration
use ndarray::Array2;
use sitk_registration_sys::registration::{AffineTransform, julia_image};
let j = julia_image(0f32, 0f32).unwrap();
let shape = j.shape();
let origin = [
((shape[1] - 1) as f64) / 2f64,
((shape[0] - 1) as f64) / 2f64,
];
let s = AffineTransform::new([1.2, 0., 0., 1., 5., 7.], origin, [shape[0], shape[1]]);
let k: Array2<_> = s.transform_image_bspline(j.view()).unwrap().into();
let t = AffineTransform::register_affine(j.view(), k.view()).unwrap().inverse().unwrap();
let d = (t.matrix() - s.matrix()).powi(2).sum();
assert!(d < 0.025, "d: {}, t: {:?}", d, t.parameters);
Interpolation
use ndarray::Array2;
use sitk_registration_sys::registration::{AffineTransform, julia_image};
let j = julia_image(-120f32, 10f32).unwrap();
let k = julia_image(0f32, 0f32).unwrap();
let shape = j.shape();
let origin = [
((shape[1] - 1) as f64) / 2f64,
((shape[0] - 1) as f64) / 2f64,
];
let transform = AffineTransform::new([1., 0., 0., 1., 120., -10.], origin, [shape[0], shape[1]]);
let n: Array2<_> = transform.transform_image_bspline(j.view()).unwrap().into();
let d = (k.mapv(|x| x as f64) - n.mapv(|x| x as f64)).powi(2).sum();
assert!(d <= (shape[0] * shape[1]) as f64);
Description
Languages
Rust
99.3%
C++
0.6%
CMake
0.1%