Now build SimpleITK into static libs and use (auto)cxx.
This commit is contained in:
51
README.md
51
README.md
@@ -2,30 +2,47 @@
|
||||
|
||||
This crate does two things:
|
||||
- find an affine transform or translation that transforms one image into the other
|
||||
- use bpline or nearest neighbor interpolation to apply a transformation to an image
|
||||
- use bspline or nearest neighbor interpolation to apply a transformation to an image
|
||||
|
||||
To do this, [SimpleITK](https://github.com/SimpleITK/SimpleITK.git), which is written in
|
||||
C++, is used. An adapter library is created to expose the required functionality in SimpleITK
|
||||
in a shared library. Because of this, compilation of this crate requires quite some time, as
|
||||
wel as cmake.
|
||||
C++, is used. An adapter library is created using [autocxx](https://crates.io/crates/autocxx)
|
||||
to expose the required functionality in SimpleITK. Because of this, compilation of this crate
|
||||
requires quite some time, several GB of memory, up to 50 GB of hard disk space, as well as
|
||||
cmake, a C++ compiler, llvm and git. Use at your own risk!
|
||||
|
||||
## Examples
|
||||
### Registration
|
||||
```
|
||||
let image_a = (some Array2);
|
||||
let iameg_b = (some transformed Array2);
|
||||
let transform = Transform::register_affine(image_a.view(), image_b.view())?;
|
||||
println!("transform: {:#?}", transform);
|
||||
use ndarray::Array2;
|
||||
use sitk_registration_sys::registration::{AffineTransform, julia_image};
|
||||
|
||||
let j = julia_image(0f32, 0f32).unwrap();
|
||||
let shape = j.shape();
|
||||
let origin = [
|
||||
((shape[1] - 1) as f64) / 2f64,
|
||||
((shape[0] - 1) as f64) / 2f64,
|
||||
];
|
||||
let s = AffineTransform::new([1.2, 0., 0., 1., 5., 7.], origin, [shape[0], shape[1]]);
|
||||
let k: Array2<_> = s.transform_image_bspline(j.view()).unwrap().into();
|
||||
let t = AffineTransform::register_affine(j.view(), k.view()).unwrap().inverse().unwrap();
|
||||
let d = (t.matrix() - s.matrix()).powi(2).sum();
|
||||
assert!(d < 0.025, "d: {}, t: {:?}", d, t.parameters);
|
||||
```
|
||||
|
||||
### Interpolation
|
||||
```
|
||||
let image = (Some Array2);
|
||||
let shape = image.shape();
|
||||
let origin = [
|
||||
((shape[1] - 1) as f64) / 2f64,
|
||||
((shape[0] - 1) as f64) / 2f64,
|
||||
];
|
||||
let transform = Transform::new([1.2, 0., 0., 1., 10., 0.], origin, [shape[0], shape[1]]);
|
||||
let transformed_image = transform.transform_image_bspline(image.view())?;
|
||||
```
|
||||
use ndarray::Array2;
|
||||
use sitk_registration_sys::registration::{AffineTransform, julia_image};
|
||||
|
||||
let j = julia_image(-120f32, 10f32).unwrap();
|
||||
let k = julia_image(0f32, 0f32).unwrap();
|
||||
let shape = j.shape();
|
||||
let origin = [
|
||||
((shape[1] - 1) as f64) / 2f64,
|
||||
((shape[0] - 1) as f64) / 2f64,
|
||||
];
|
||||
let transform = AffineTransform::new([1., 0., 0., 1., 120., -10.], origin, [shape[0], shape[1]]);
|
||||
let n: Array2<_> = transform.transform_image_bspline(j.view()).unwrap().into();
|
||||
let d = (k.mapv(|x| x as f64) - n.mapv(|x| x as f64)).powi(2).sum();
|
||||
assert!(d <= (shape[0] * shape[1]) as f64);
|
||||
```
|
||||
Reference in New Issue
Block a user