# Parfor Used to parallelize for-loops using parfor in Matlab? This package allows you to do the same in python. Take any normal serial but parallelizable for-loop and execute it in parallel using easy syntax. Don't worry about the technical details of using the multiprocessing module, race conditions, queues, parfor handles all that. Tested on linux on python 2.7 and 3.8 ## Usage Parfor decorates a functions and returns the result of that function evaluated for each iteration of an iterator. ## Requires tqdm, dill ## Limitations Some objects cannot be passed and or used in child processes. Such objects include objects relying on java-bridge. Examples include reader objects from the python-bioformats package. ### Required arguments: fun: function taking arguments: iteration from iterable, other arguments defined in args & kwargs iterable: iterable from which an item is given to fun as a first argument ### Optional arguments: args: tuple with other unnamed arguments to fun kwargs: dict with other named arguments to fun length: give the length of the iterator in cases where len(iterator) results in an error desc: string with description of the progress bar bar: bool enable progress bar pbar: bool enable buffer indicator bar nP: number of workers, default: number of cpu's/3 serial: switch to serial if number of tasks less than serial, default: 4 debug: if an error occurs in an iteration, return the erorr instead of retrying in the main process ### Output list with results from applying the decorated function to each iteration of the iterator specified as the first argument to the function ## Examples ### Normal serial for loop << from time import sleep a = 3 fun = [] for i in range(10): sleep(1) fun.append(a*i**2) print(fun) >> [0, 3, 12, 27, 48, 75, 108, 147, 192, 243] ### Using parfor on the same loop << from time import sleep from parfor import parfor @parfor(range(10), (3,)) def fun(i, a): sleep(1) return a*i**2 print(fun) >> [0, 3, 12, 27, 48, 75, 108, 147, 192, 243] << @parfor(range(10), (3,), bar=False) def fun(i, a): sleep(1) return a*i**2 print(fun) >> [0, 3, 12, 27, 48, 75, 108, 147, 192, 243] ### If you hate decorators not returning a function pmap maps an iterator to a function like map does, but in parallel << from parfor import pmap from time import sleep def fun(i, a): sleep(1) return a*i**2 print(pmap(fun, range(10), (3,))) >> [0, 3, 12, 27, 48, 75, 108, 147, 192, 243] ### Using generators If iterators like lists and tuples are too big for the memory, use generators instead. Since generators don't have a predefined length, give parfor the length as an argument (optional). << import numpy as np c = (im for im in imagereader) @parfor(c, length=len(imagereader)) def fun(im): return np.mean(im) >> [list with means of the images] # Extra's ## Pmap The function parfor decorates, use it like map. ## Chunks Split a long iterator in bite-sized chunks to parallelize ## Parpool More low-level accessibility to parallel execution. Submit tasks and request the result at any time, (although necessarily submit first, then request a specific task), use different functions and function arguments for different tasks. ## Tqdmm Meter bar, inherited from tqdm, used for displaying buffers.