Files
ndbioimage/ndbioimage/readers/tifread.py

171 lines
6.7 KiB
Python

import re
import warnings
from abc import ABC
from functools import cached_property
from itertools import product
from pathlib import Path
import numpy as np
import tifffile
import yaml
from ome_types import from_xml, model
from .. import AbstractReader, try_default
class Reader(AbstractReader, ABC):
priority = 0
do_not_pickle = "reader"
@staticmethod
def _can_open(path):
if isinstance(path, Path) and path.suffix in (".tif", ".tiff"):
with tifffile.TiffFile(path) as tif:
return tif.is_imagej and tif.pages[-1]._nextifd() == 0 # noqa
else:
return False
@cached_property
def metadata(self):
return {
key: try_default(yaml.safe_load, value, value) if isinstance(value, str) else value
for key, value in self.reader.imagej_metadata.items()
}
def get_ome(self):
if self.reader.is_ome:
pos_number_pat = re.compile(r"\d+")
def get_pos_number(s):
return [int(i) for i in pos_number_pat.findall(s)]
match = re.match(r"^(.*)(pos[\d_]+)(.*)$", self.path.name, flags=re.IGNORECASE)
if match is not None and len(match.groups()) == 3:
a, b, c = match.groups()
pat = re.compile(f"^{re.escape(a)}" + re.sub(r"\d+", r"\\d+", b) + f"{re.escape(c)}$")
backup_ome = []
backup_backup_ome = []
pos_number = get_pos_number(b)
for file in sorted(self.path.parent.iterdir(), key=lambda i: (len(i.name), i.name)):
if pat.match(file.name):
with tifffile.TiffFile(file) as tif:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
ome = from_xml(tif.ome_metadata)
backup_backup_ome.extend(ome.images)
try:
backup_ome.extend(
[
image
for image in ome.images
if pos_number == get_pos_number(image.stage_label.name)
]
)
except ValueError:
pass
ome.images = [image for image in ome.images if b == image.stage_label.name]
if ome.images:
return ome
if backup_ome:
ome.images = [backup_ome[0]]
warnings.warn(
"could not find the ome.tif file containing the metadata with an exact match, "
f"matched {ome.images[0].stage_label.name} with {b} instead, "
"did you rename the file?"
)
return ome
if backup_backup_ome:
ome.images = [backup_backup_ome[0]]
warnings.warn(
"could not find the ome.tif file containing the metadata, "
f"used metadata from {ome.images[0].name} instead, "
"did you rename the file"
)
return ome
warnings.warn("could not find the ome.tif file containing the metadata")
page = self.reader.pages[0]
size_y = page.imagelength
size_x = page.imagewidth
if self.p_ndim == 3:
size_c = page.samplesperpixel
size_t = self.metadata.get("frames", 1) # // C
else:
size_c = self.metadata.get("channels", 1)
size_t = self.metadata.get("frames", 1)
size_z = self.metadata.get("slices", 1)
if 282 in page.tags and 296 in page.tags and page.tags[296].value == 1:
f = page.tags[282].value
pxsize = f[1] / f[0]
else:
pxsize = None
dtype = page.dtype.name
if dtype not in (
"int8",
"int16",
"int32",
"uint8",
"uint16",
"uint32",
"float",
"double",
"complex",
"double-complex",
"bit",
):
dtype = "float"
interval_t = self.metadata.get("interval", 0)
ome = model.OME()
ome.instruments.append(model.Instrument(id="Instrument:0"))
ome.instruments[0].objectives.append(model.Objective(id="Objective:0"))
ome.images.append(
model.Image(
id="Image:0",
pixels=model.Pixels(
id="Pixels:0",
size_c=size_c,
size_z=size_z,
size_t=size_t,
size_x=size_x,
size_y=size_y,
dimension_order="XYCZT",
type=dtype, # type: ignore
physical_size_x=pxsize,
physical_size_y=pxsize,
),
objective_settings=model.ObjectiveSettings(id="Objective:0"),
)
)
for c, z, t in product(range(size_c), range(size_z), range(size_t)):
ome.images[0].pixels.planes.append(model.Plane(the_c=c, the_z=z, the_t=t, delta_t=interval_t * t))
return ome
def open(self):
self.reader = tifffile.TiffFile(self.path)
page = self.reader.pages.first
self.p_ndim = page.ndim # noqa
if self.p_ndim == 3:
self.p_transpose = [i for i in [page.axes.find(j) for j in "SYX"] if i >= 0] # noqa
else:
self.p_transpose = [i for i in [page.axes.find(j) for j in "YX"] if i >= 0] # noqa
def close(self):
self.reader.close()
def __frame__(self, c: int, z: int, t: int):
dimension_order = self.ome.images[0].pixels.dimension_order.value
if self.p_ndim == 3:
axes = "".join([ax.lower() for ax in dimension_order if ax.lower() in "zt"])
ct = {"z": z, "t": t}
n = sum([ct[ax] * np.prod(self.base_shape[axes[:i]]) for i, ax in enumerate(axes)])
return np.transpose(self.reader.asarray(int(n)), self.p_transpose)[int(c)]
else:
axes = "".join([ax.lower() for ax in dimension_order if ax.lower() in "czt"])
czt = {"c": c, "z": z, "t": t}
n = sum([czt[ax] * np.prod(self.base_shape[axes[:i]]) for i, ax in enumerate(axes)])
return np.transpose(self.reader.asarray(int(n)), self.p_transpose)