140 lines
6.5 KiB
Python
140 lines
6.5 KiB
Python
import re
|
|
from abc import ABC
|
|
from datetime import datetime
|
|
from itertools import product
|
|
from pathlib import Path
|
|
|
|
import tifffile
|
|
import yaml
|
|
from ome_types import model
|
|
from ome_types.units import _quantity_property # noqa
|
|
|
|
from .. import AbstractReader
|
|
|
|
|
|
def lazy_property(function, field, *arg_fields):
|
|
def lazy(self):
|
|
if self.__dict__.get(field) is None:
|
|
self.__dict__[field] = function(*[getattr(self, arg_field) for arg_field in arg_fields])
|
|
try:
|
|
self.model_fields_set.add(field)
|
|
except Exception: # noqa
|
|
pass
|
|
return self.__dict__[field]
|
|
return property(lazy)
|
|
|
|
|
|
class Plane(model.Plane):
|
|
""" Lazily retrieve delta_t from metadata """
|
|
def __init__(self, t0, file, **kwargs): # noqa
|
|
super().__init__(**kwargs)
|
|
# setting fields here because they would be removed by ome_types/pydantic after class definition
|
|
setattr(self.__class__, 'delta_t', lazy_property(self.get_delta_t, 'delta_t', 't0', 'file'))
|
|
setattr(self.__class__, 'delta_t_quantity', _quantity_property('delta_t'))
|
|
self.__dict__['t0'] = t0 # noqa
|
|
self.__dict__['file'] = file # noqa
|
|
|
|
@staticmethod
|
|
def get_delta_t(t0, file):
|
|
with tifffile.TiffFile(file) as tif:
|
|
info = yaml.safe_load(tif.pages[0].tags[50839].value['Info'])
|
|
return float((datetime.strptime(info['Time'], '%Y-%m-%d %H:%M:%S %z') - t0).seconds)
|
|
|
|
|
|
class Reader(AbstractReader, ABC):
|
|
priority = 10
|
|
|
|
@staticmethod
|
|
def _can_open(path):
|
|
pat = re.compile(r'(?:\d+-)?Pos.*', re.IGNORECASE)
|
|
return (isinstance(path, Path) and path.is_dir() and
|
|
(pat.match(path.name) or any(file.is_dir() and pat.match(file.stem) for file in path.iterdir())))
|
|
|
|
def get_ome(self):
|
|
ome = model.OME()
|
|
with tifffile.TiffFile(self.filedict[0, 0, 0]) as tif:
|
|
metadata = {key: yaml.safe_load(value) for key, value in tif.pages[0].tags[50839].value.items()}
|
|
ome.experimenters.append(
|
|
model.Experimenter(id='Experimenter:0', user_name=metadata['Info']['Summary']['UserName']))
|
|
objective_str = metadata['Info']['ZeissObjectiveTurret-Label']
|
|
ome.instruments.append(model.Instrument())
|
|
ome.instruments[0].objectives.append(
|
|
model.Objective(
|
|
id='Objective:0', manufacturer='Zeiss', model=objective_str,
|
|
nominal_magnification=float(re.findall(r'(\d+)x', objective_str)[0]),
|
|
lens_na=float(re.findall(r'/(\d\.\d+)', objective_str)[0]),
|
|
immersion=model.Objective_Immersion.OIL if 'oil' in objective_str.lower() else None))
|
|
tubelens_str = metadata['Info']['ZeissOptovar-Label']
|
|
ome.instruments[0].objectives.append(
|
|
model.Objective(
|
|
id='Objective:Tubelens:0', manufacturer='Zeiss', model=tubelens_str,
|
|
nominal_magnification=float(re.findall(r'\d?\d*[,.]?\d+(?=x$)', tubelens_str)[0].replace(',', '.'))))
|
|
ome.instruments[0].detectors.append(
|
|
model.Detector(
|
|
id='Detector:0', amplification_gain=100))
|
|
ome.instruments[0].filter_sets.append(
|
|
model.FilterSet(id='FilterSet:0', model=metadata['Info']['ZeissReflectorTurret-Label']))
|
|
|
|
pxsize = metadata['Info']['PixelSizeUm']
|
|
pxsize_cam = 6.5 if 'Hamamatsu' in metadata['Info']['Core-Camera'] else None
|
|
if pxsize == 0:
|
|
pxsize = pxsize_cam / ome.instruments[0].objectives[0].nominal_magnification
|
|
pixel_type = metadata['Info']['PixelType'].lower()
|
|
if pixel_type.startswith('gray'):
|
|
pixel_type = 'uint' + pixel_type[4:]
|
|
else:
|
|
pixel_type = 'uint16' # assume
|
|
|
|
size_c, size_z, size_t = (max(i) + 1 for i in zip(*self.filedict.keys()))
|
|
t0 = datetime.strptime(metadata['Info']['Time'], '%Y-%m-%d %H:%M:%S %z')
|
|
ome.images.append(
|
|
model.Image(
|
|
pixels=model.Pixels(
|
|
size_c=size_c, size_z=size_z, size_t=size_t,
|
|
size_x=metadata['Info']['Width'], size_y=metadata['Info']['Height'],
|
|
dimension_order='XYCZT', type=pixel_type, physical_size_x=pxsize, physical_size_y=pxsize,
|
|
physical_size_z=metadata['Info']['Summary']['z-step_um']),
|
|
objective_settings=model.ObjectiveSettings(id='Objective:0')))
|
|
|
|
for c, z, t in product(range(size_c), range(size_z), range(size_t)):
|
|
ome.images[0].pixels.planes.append(
|
|
Plane(t0, self.filedict[c, z, t],
|
|
the_c=c, the_z=z, the_t=t, exposure_time=metadata['Info']['Exposure-ms'] / 1000))
|
|
|
|
# compare channel names from metadata with filenames
|
|
pattern_c = re.compile(r'img_\d{3,}_(.*)_\d{3,}$', re.IGNORECASE)
|
|
for c in range(size_c):
|
|
ome.images[0].pixels.channels.append(
|
|
model.Channel(
|
|
id=f'Channel:{c}', name=pattern_c.findall(self.filedict[c, 0, 0].stem)[0],
|
|
detector_settings=model.DetectorSettings(
|
|
id='Detector:0', binning=metadata['Info']['Hamamatsu_sCMOS-Binning']),
|
|
filter_set_ref=model.FilterSetRef(id='FilterSet:0')))
|
|
return ome
|
|
|
|
def open(self):
|
|
pat = re.compile(r'(?:\d+-)?Pos.*', re.IGNORECASE)
|
|
if pat.match(self.path.name) is None:
|
|
path = sorted(file for file in self.path.iterdir() if pat.match(file.name))[self.series]
|
|
else:
|
|
path = self.path
|
|
|
|
pat = re.compile(r'^img_\d{3,}.*\d{3,}.*\.tif$', re.IGNORECASE)
|
|
filelist = sorted([file for file in path.iterdir() if pat.search(file.name)])
|
|
with tifffile.TiffFile(self.path / filelist[0]) as tif:
|
|
metadata = {key: yaml.safe_load(value) for key, value in tif.pages[0].tags[50839].value.items()}
|
|
|
|
# compare channel names from metadata with filenames
|
|
cnamelist = metadata['Info']['Summary']['ChNames']
|
|
cnamelist = [c for c in cnamelist if any([c in f.name for f in filelist])]
|
|
|
|
pattern_c = re.compile(r'img_\d{3,}_(.*)_\d{3,}$', re.IGNORECASE)
|
|
pattern_z = re.compile(r'(\d{3,})$')
|
|
pattern_t = re.compile(r'img_(\d{3,})', re.IGNORECASE)
|
|
self.filedict = {(cnamelist.index(pattern_c.findall(file.stem)[0]), # noqa
|
|
int(pattern_z.findall(file.stem)[0]),
|
|
int(pattern_t.findall(file.stem)[0])): file for file in filelist}
|
|
|
|
def __frame__(self, c=0, z=0, t=0):
|
|
return tifffile.imread(self.path / self.filedict[(c, z, t)])
|