|
|
|
|
@@ -1,8 +1,8 @@
|
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
|
|
import multiprocessing
|
|
|
|
|
import re
|
|
|
|
|
import os
|
|
|
|
|
import re
|
|
|
|
|
import warnings
|
|
|
|
|
from abc import ABC, ABCMeta, abstractmethod
|
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
@@ -11,18 +11,17 @@ from datetime import datetime
|
|
|
|
|
from functools import cached_property, wraps
|
|
|
|
|
from importlib.metadata import version
|
|
|
|
|
from itertools import product
|
|
|
|
|
from numbers import Number
|
|
|
|
|
from operator import truediv
|
|
|
|
|
from pathlib import Path, PosixPath, WindowsPath, PurePath
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
from traceback import print_exc
|
|
|
|
|
from typing import Any, Callable, Mapping, Optional
|
|
|
|
|
from typing import Any, Callable, Generator, Iterable, Optional, Sequence, TypeVar
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import ome_types
|
|
|
|
|
import yaml
|
|
|
|
|
from ome_types import OME, model, ureg
|
|
|
|
|
from numpy.typing import ArrayLike, DTypeLike
|
|
|
|
|
from ome_types import OME, from_xml, model, ureg
|
|
|
|
|
from pint import set_application_registry
|
|
|
|
|
from tiffwrite import IFD, IJTiffFile
|
|
|
|
|
from tiffwrite import IFD, IJTiffFile # noqa
|
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
|
|
from .jvm import JVM
|
|
|
|
|
@@ -44,6 +43,7 @@ except Exception: # noqa
|
|
|
|
|
ureg.default_format = '~P'
|
|
|
|
|
set_application_registry(ureg)
|
|
|
|
|
warnings.filterwarnings('ignore', 'Reference to unknown ID')
|
|
|
|
|
Number = int | float | np.integer | np.floating
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ReaderNotFoundError(Exception):
|
|
|
|
|
@@ -79,7 +79,7 @@ class DequeDict(OrderedDict):
|
|
|
|
|
self.__truncate__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find(obj: Mapping, **kwargs: Any) -> Any:
|
|
|
|
|
def find(obj: Sequence[Any], **kwargs: Any) -> Any:
|
|
|
|
|
for item in obj:
|
|
|
|
|
try:
|
|
|
|
|
if all([getattr(item, key) == value for key, value in kwargs.items()]):
|
|
|
|
|
@@ -88,7 +88,10 @@ def find(obj: Mapping, **kwargs: Any) -> Any:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def try_default(fun: Callable, default: Any, *args: Any, **kwargs: Any) -> Any:
|
|
|
|
|
R = TypeVar('R')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def try_default(fun: Callable[..., R], default: Any, *args: Any, **kwargs: Any) -> R:
|
|
|
|
|
try:
|
|
|
|
|
return fun(*args, **kwargs)
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
@@ -103,7 +106,7 @@ def bioformats_ome(path: str | Path) -> OME:
|
|
|
|
|
reader = jvm.image_reader()
|
|
|
|
|
reader.setMetadataStore(ome_meta)
|
|
|
|
|
reader.setId(str(path))
|
|
|
|
|
ome = ome_types.from_xml(str(ome_meta.dumpXML()), parser='lxml')
|
|
|
|
|
ome = from_xml(str(ome_meta.dumpXML()), parser='lxml')
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
print_exc()
|
|
|
|
|
ome = model.OME()
|
|
|
|
|
@@ -113,12 +116,12 @@ def bioformats_ome(path: str | Path) -> OME:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Shape(tuple):
|
|
|
|
|
def __new__(cls, shape: tuple[int] | Shape[int], axes: str = 'yxczt') -> Shape[int]:
|
|
|
|
|
def __new__(cls, shape: Sequence[int] | Shape, axes: str = 'yxczt') -> Shape:
|
|
|
|
|
if isinstance(shape, Shape):
|
|
|
|
|
axes = shape.axes # type: ignore
|
|
|
|
|
instance = super().__new__(cls, shape)
|
|
|
|
|
instance.axes = axes.lower()
|
|
|
|
|
return instance # type: ignore
|
|
|
|
|
new = super().__new__(cls, shape)
|
|
|
|
|
new.axes = axes.lower()
|
|
|
|
|
return new # type: ignore
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, n: int | str) -> int | tuple[int]:
|
|
|
|
|
if isinstance(n, str):
|
|
|
|
|
@@ -170,11 +173,8 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
currently optimized for .czi files, but can open anything that bioformats can handle
|
|
|
|
|
path: path to the image file
|
|
|
|
|
optional:
|
|
|
|
|
series: in case multiple experiments are saved in one file, like in .lif files
|
|
|
|
|
axes: order of axes, default: cztyx, but omitting any axes with lenght 1
|
|
|
|
|
dtype: datatype to be used when returning frames
|
|
|
|
|
meta: define metadata, used for pickle-ing
|
|
|
|
|
|
|
|
|
|
NOTE: run imread.kill_vm() at the end of your script/program, otherwise python might not terminate
|
|
|
|
|
|
|
|
|
|
modify images on the fly with a decorator function:
|
|
|
|
|
define a function which takes an instance of this object, one image frame,
|
|
|
|
|
@@ -183,21 +183,18 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
then use imread as usually
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>> im = imread('/DATA/lenstra_lab/w.pomp/data/20190913/01_YTL639_JF646_DefiniteFocus.czi')
|
|
|
|
|
>> im = Imread('/path/to/file.image', axes='czt)
|
|
|
|
|
>> im
|
|
|
|
|
<< shows summary
|
|
|
|
|
>> im.shape
|
|
|
|
|
<< (256, 256, 2, 1, 600)
|
|
|
|
|
>> plt.imshow(im(1, 0, 100))
|
|
|
|
|
<< plots frame at position c=1, z=0, t=100 (python type indexing), note: round brackets; always 2d array
|
|
|
|
|
with 1 frame
|
|
|
|
|
>> data = im[:,:,0,0,:25]
|
|
|
|
|
<< retrieves 5d numpy array containing first 25 frames at c=0, z=0, note: square brackets; always 5d array
|
|
|
|
|
>> plt.imshow(im.max(0, None, 0))
|
|
|
|
|
<< plots max-z projection at c=0, t=0
|
|
|
|
|
>> len(im)
|
|
|
|
|
<< total number of frames
|
|
|
|
|
>> im.pxsize
|
|
|
|
|
<< (15, 26, 1000, 1000)
|
|
|
|
|
>> im.axes
|
|
|
|
|
<< 'ztyx'
|
|
|
|
|
>> plt.imshow(im[1, 0])
|
|
|
|
|
<< plots frame at position z=1, t=0 (python type indexing)
|
|
|
|
|
>> plt.imshow(im[:, 0].max('z'))
|
|
|
|
|
<< plots max-z projection at t=0
|
|
|
|
|
>> im.pxsize_um
|
|
|
|
|
<< 0.09708737864077668 image-plane pixel size in um
|
|
|
|
|
>> im.laserwavelengths
|
|
|
|
|
<< [642, 488]
|
|
|
|
|
@@ -210,15 +207,37 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
Subclass AbstractReader to add more file types. A subclass should always have at least the following
|
|
|
|
|
methods:
|
|
|
|
|
staticmethod _can_open(path): returns True when the subclass can open the image in path
|
|
|
|
|
__metadata__(self): pulls some metadata from the file and do other format specific things,
|
|
|
|
|
it needs to define a few properties, like shape, etc.
|
|
|
|
|
__frame__(self, c, z, t): this should return a single frame at channel c, slice z and time t
|
|
|
|
|
optional open(self): code to be run during initialization, e.g. to open a file handle
|
|
|
|
|
optional close(self): close the file in a proper way
|
|
|
|
|
optional field priority: subclasses with lower priority will be tried first, default = 99
|
|
|
|
|
optional class field priority: subclasses with lower priority will be tried first, default = 99
|
|
|
|
|
optional get_ome(self) -> OME: return an OME structure with metadata,
|
|
|
|
|
if not present bioformats will be used to generate an OME
|
|
|
|
|
Any other method can be overridden as needed
|
|
|
|
|
wp@tl2019-2023 """
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __new__(cls, path=None, *args, **kwargs):
|
|
|
|
|
isclosed: Optional[bool]
|
|
|
|
|
channel_names: Optional[list[str]]
|
|
|
|
|
series: Optional[int]
|
|
|
|
|
pxsize_um: Optional[float]
|
|
|
|
|
deltaz_um: Optional[float]
|
|
|
|
|
exposuretime_s: Optional[list[float]]
|
|
|
|
|
timeinterval: Optional[float]
|
|
|
|
|
binning: Optional[list[int]]
|
|
|
|
|
laserwavelengths: Optional[list[tuple[float]]]
|
|
|
|
|
laserpowers: Optional[list[tuple[float]]]
|
|
|
|
|
objective: Optional[model.Objective]
|
|
|
|
|
magnification: Optional[float]
|
|
|
|
|
tubelens: Optional[model.Objective]
|
|
|
|
|
filter: Optional[str]
|
|
|
|
|
powermode: Optional[str]
|
|
|
|
|
collimator: Optional[str]
|
|
|
|
|
tirfangle: Optional[list[float]]
|
|
|
|
|
gain: Optional[list[float]]
|
|
|
|
|
pcf: Optional[list[float]]
|
|
|
|
|
__frame__: Callable[[int, int, int], np.ndarray]
|
|
|
|
|
|
|
|
|
|
def __new__(cls, path: Path | str | Imread | Any = None, dtype: DTypeLike = None, axes: str = None) -> Imread:
|
|
|
|
|
if cls is not Imread:
|
|
|
|
|
return super().__new__(cls)
|
|
|
|
|
if len(AbstractReader.__subclasses__()) == 0:
|
|
|
|
|
@@ -227,7 +246,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return path
|
|
|
|
|
path, _ = AbstractReader.split_path_series(path)
|
|
|
|
|
for subclass in sorted(AbstractReader.__subclasses__(), key=lambda subclass_: subclass_.priority):
|
|
|
|
|
if subclass._can_open(path):
|
|
|
|
|
if subclass._can_open(path): # noqa
|
|
|
|
|
do_not_pickle = (AbstractReader.do_not_pickle,) if isinstance(AbstractReader.do_not_pickle, str) \
|
|
|
|
|
else AbstractReader.do_not_pickle
|
|
|
|
|
subclass_do_not_pickle = (subclass.do_not_pickle,) if isinstance(subclass.do_not_pickle, str) \
|
|
|
|
|
@@ -237,7 +256,11 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return super().__new__(subclass)
|
|
|
|
|
raise ReaderNotFoundError(f'No reader found for {path}.')
|
|
|
|
|
|
|
|
|
|
def __init__(self, base=None, slice=None, shape=(0, 0, 0, 0, 0), dtype=None, frame_decorator=None):
|
|
|
|
|
def __init__(self, base: Imread = None,
|
|
|
|
|
slice: tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray] = None, # noqa
|
|
|
|
|
shape: tuple[int, ...] = (0, 0, 0, 0, 0),
|
|
|
|
|
dtype: DTypeLike = None,
|
|
|
|
|
frame_decorator: Callable[[Imread, np.ndarray, int, int, int], np.ndarray] = None) -> None:
|
|
|
|
|
self.base = base or self
|
|
|
|
|
self.slice = slice
|
|
|
|
|
self._shape = Shape(shape)
|
|
|
|
|
@@ -247,15 +270,15 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
self.flags = dict(C_CONTIGUOUS=False, F_CONTIGUOUS=False, OWNDATA=False, WRITEABLE=False,
|
|
|
|
|
ALIGNED=False, WRITEBACKIFCOPY=False, UPDATEIFCOPY=False)
|
|
|
|
|
|
|
|
|
|
def __call__(self, c=None, z=None, t=None, x=None, y=None):
|
|
|
|
|
def __call__(self, c: int = None, z: int = None, t: int = None, x: int = None, y: int = None) -> np.ndarray:
|
|
|
|
|
""" same as im[] but allowing keyword axes, but slices need to made with slice() or np.s_ """
|
|
|
|
|
return self[{k: slice(v) if v is None else v for k, v in dict(c=c, z=z, t=t, x=x, y=y).items()}]
|
|
|
|
|
|
|
|
|
|
def __copy__(self):
|
|
|
|
|
def __copy__(self) -> Imread:
|
|
|
|
|
return self.copy()
|
|
|
|
|
|
|
|
|
|
def __contains__(self, item):
|
|
|
|
|
def unique_yield(a, b):
|
|
|
|
|
def __contains__(self, item: Number) -> bool:
|
|
|
|
|
def unique_yield(a: Iterable[Any], b: Iterable[Any]) -> Generator[Any, None, None]:
|
|
|
|
|
for k in a:
|
|
|
|
|
yield k
|
|
|
|
|
for k in b:
|
|
|
|
|
@@ -270,16 +293,17 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return True
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
|
def __enter__(self) -> Imread:
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
|
|
|
def __exit__(self, *args: Any, **kwargs: Any) -> None:
|
|
|
|
|
if not self.isclosed:
|
|
|
|
|
self.isclosed = True
|
|
|
|
|
if hasattr(self, 'close'):
|
|
|
|
|
self.close()
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, n):
|
|
|
|
|
def __getitem__(self, n: int | Sequence[int] | slice | type(Ellipsis) |
|
|
|
|
|
dict[str, int | Sequence[int] | slice | type(Ellipsis)]) -> Number | Imread | np.ndarray:
|
|
|
|
|
""" slice like a numpy array but return an Imread instance """
|
|
|
|
|
if self.isclosed:
|
|
|
|
|
raise OSError('file is closed')
|
|
|
|
|
@@ -326,26 +350,26 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
if not isinstance(s, Number)])
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
def __getstate__(self):
|
|
|
|
|
def __getstate__(self) -> dict[str: Any]:
|
|
|
|
|
return {key: value for key, value in self.__dict__.items() if key not in self.do_not_pickle}
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
|
return self.shape[0]
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
|
return self.summary
|
|
|
|
|
|
|
|
|
|
def __setstate__(self, state):
|
|
|
|
|
def __setstate__(self, state: dict[str, Any]) -> None:
|
|
|
|
|
""" What happens during unpickling """
|
|
|
|
|
self.__dict__.update(state)
|
|
|
|
|
if isinstance(self, AbstractReader):
|
|
|
|
|
self.open()
|
|
|
|
|
self.cache = DequeDict(16)
|
|
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
|
def __str__(self) -> str:
|
|
|
|
|
return str(self.path)
|
|
|
|
|
|
|
|
|
|
def __array__(self, dtype=None):
|
|
|
|
|
def __array__(self, dtype: DTypeLike = None) -> np.ndarray:
|
|
|
|
|
block = self.block(*self.slice)
|
|
|
|
|
axes_idx = [self.shape.axes.find(i) for i in 'yxczt']
|
|
|
|
|
axes_squeeze = tuple({i for i, j in enumerate(axes_idx) if j == -1}.union(
|
|
|
|
|
@@ -358,7 +382,8 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
axes = ''.join(j for i, j in enumerate('yxczt') if i not in axes_squeeze)
|
|
|
|
|
return block.transpose([axes.find(i) for i in self.shape.axes if i in axes])
|
|
|
|
|
|
|
|
|
|
def __array_arg_fun__(self, fun, axis=None, out=None):
|
|
|
|
|
def __array_arg_fun__(self, fun: Callable[[ArrayLike, Optional[int]], Number | np.ndarray],
|
|
|
|
|
axis: int | str = None, out: np.ndarray = None) -> Number | np.ndarray:
|
|
|
|
|
""" frame-wise application of np.argmin and np.argmax """
|
|
|
|
|
if axis is None:
|
|
|
|
|
value = arg = None
|
|
|
|
|
@@ -366,13 +391,13 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
yxczt = (slice(None), slice(None)) + idx
|
|
|
|
|
in_idx = tuple(yxczt['yxczt'.find(i)] for i in self.axes)
|
|
|
|
|
new = np.asarray(self[in_idx])
|
|
|
|
|
new_arg = np.unravel_index(fun(new), new.shape)
|
|
|
|
|
new_arg = np.unravel_index(fun(new), new.shape) # type: ignore
|
|
|
|
|
new_value = new[new_arg]
|
|
|
|
|
if value is None:
|
|
|
|
|
arg = new_arg + idx
|
|
|
|
|
value = new_value
|
|
|
|
|
else:
|
|
|
|
|
i = fun((value, new_value))
|
|
|
|
|
i = fun((value, new_value)) # type: ignore
|
|
|
|
|
arg = (arg, new_arg + idx)[i]
|
|
|
|
|
value = (value, new_value)[i]
|
|
|
|
|
axes = ''.join(i for i in self.axes if i in 'yx') + 'czt'
|
|
|
|
|
@@ -420,8 +445,11 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
out[out_idx] = np.where(i, new_arg, out[out_idx])
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def __array_fun__(self, funs, axis=None, dtype=None, out=None, keepdims=False, initials=None, where=True,
|
|
|
|
|
ffuns=None, cfun=None):
|
|
|
|
|
def __array_fun__(self, funs: Sequence[Callable[[ArrayLike], Number | np.ndarray]], axis: int | str = None,
|
|
|
|
|
dtype: DTypeLike = None, out: np.ndarray = None, keepdims: bool = False,
|
|
|
|
|
initials: list[Number | np.ndarray] = None, where: bool | int | np.ndarray = True,
|
|
|
|
|
ffuns: Sequence[Callable[[ArrayLike], np.ndarray]] = None,
|
|
|
|
|
cfun: Callable[..., np.ndarray] = None) -> Number | np.ndarray:
|
|
|
|
|
""" frame-wise application of np.min, np.max, np.sum, np.mean and their nan equivalents """
|
|
|
|
|
p = re.compile(r'\d')
|
|
|
|
|
dtype = self.dtype if dtype is None else np.dtype(dtype)
|
|
|
|
|
@@ -430,11 +458,11 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
if ffuns is None:
|
|
|
|
|
ffuns = [None for _ in funs]
|
|
|
|
|
|
|
|
|
|
def ffun_(frame):
|
|
|
|
|
def ffun_(frame: ArrayLike) -> np.ndarray:
|
|
|
|
|
return np.asarray(frame)
|
|
|
|
|
ffuns = [ffun_ if ffun is None else ffun for ffun in ffuns]
|
|
|
|
|
if cfun is None:
|
|
|
|
|
def cfun(*res):
|
|
|
|
|
def cfun(*res): # noqa
|
|
|
|
|
return res[0]
|
|
|
|
|
|
|
|
|
|
# TODO: smarter transforms
|
|
|
|
|
@@ -501,26 +529,26 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def axes(self):
|
|
|
|
|
def axes(self) -> str:
|
|
|
|
|
return self.shape.axes
|
|
|
|
|
|
|
|
|
|
@axes.setter
|
|
|
|
|
def axes(self, value):
|
|
|
|
|
def axes(self, value: str) -> None:
|
|
|
|
|
shape = self.shape[value]
|
|
|
|
|
if isinstance(shape, Number):
|
|
|
|
|
shape = (shape,)
|
|
|
|
|
self._shape = Shape(shape, value)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def dtype(self):
|
|
|
|
|
def dtype(self) -> np.dtype:
|
|
|
|
|
return self._dtype
|
|
|
|
|
|
|
|
|
|
@dtype.setter
|
|
|
|
|
def dtype(self, value):
|
|
|
|
|
def dtype(self, value: DTypeLike) -> None:
|
|
|
|
|
self._dtype = np.dtype(value)
|
|
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
|
def extrametadata(self):
|
|
|
|
|
def extrametadata(self) -> Optional[Any]:
|
|
|
|
|
if isinstance(self.path, Path):
|
|
|
|
|
if self.path.with_suffix('.pzl2').exists():
|
|
|
|
|
pname = self.path.with_suffix('.pzl2')
|
|
|
|
|
@@ -535,26 +563,26 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def ndim(self):
|
|
|
|
|
def ndim(self) -> int:
|
|
|
|
|
return len(self.shape)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def size(self):
|
|
|
|
|
def size(self) -> int:
|
|
|
|
|
return np.prod(self.shape)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def shape(self):
|
|
|
|
|
def shape(self) -> Shape:
|
|
|
|
|
return self._shape
|
|
|
|
|
|
|
|
|
|
@shape.setter
|
|
|
|
|
def shape(self, value):
|
|
|
|
|
def shape(self, value: Shape | tuple[int, ...]) -> None:
|
|
|
|
|
if isinstance(value, Shape):
|
|
|
|
|
self._shape = value
|
|
|
|
|
else:
|
|
|
|
|
self._shape = Shape((value['yxczt'.find(i.lower())] for i in self.axes), self.axes)
|
|
|
|
|
self._shape = Shape([value['yxczt'.find(i.lower())] for i in self.axes], self.axes)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def summary(self):
|
|
|
|
|
def summary(self) -> str:
|
|
|
|
|
""" gives a helpful summary of the recorded experiment """
|
|
|
|
|
s = [f'path/filename: {self.path}',
|
|
|
|
|
f'series/pos: {self.series}',
|
|
|
|
|
@@ -598,44 +626,44 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return '\n'.join(s)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def T(self):
|
|
|
|
|
def T(self) -> Imread: # noqa
|
|
|
|
|
return self.transpose()
|
|
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
|
def timeseries(self):
|
|
|
|
|
def timeseries(self) -> bool:
|
|
|
|
|
return self.shape['t'] > 1
|
|
|
|
|
|
|
|
|
|
@cached_property
|
|
|
|
|
def zstack(self):
|
|
|
|
|
def zstack(self) -> bool:
|
|
|
|
|
return self.shape['z'] > 1
|
|
|
|
|
|
|
|
|
|
@wraps(np.argmax)
|
|
|
|
|
@wraps(np.ndarray.argmax)
|
|
|
|
|
def argmax(self, *args, **kwargs):
|
|
|
|
|
return self.__array_arg_fun__(np.argmax, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
@wraps(np.argmin)
|
|
|
|
|
@wraps(np.ndarray.argmin)
|
|
|
|
|
def argmin(self, *args, **kwargs):
|
|
|
|
|
return self.__array_arg_fun__(np.argmin, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
@wraps(np.max)
|
|
|
|
|
def max(self, axis=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
@wraps(np.ndarray.max)
|
|
|
|
|
def max(self, axis=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.max], axis, None, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.mean)
|
|
|
|
|
def mean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True, **kwargs):
|
|
|
|
|
@wraps(np.ndarray.mean)
|
|
|
|
|
def mean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True, **_):
|
|
|
|
|
dtype = dtype or float
|
|
|
|
|
n = np.prod(self.shape) if axis is None else self.shape[axis]
|
|
|
|
|
|
|
|
|
|
def sfun(frame):
|
|
|
|
|
def sfun(frame: ArrayLike) -> np.ndarray:
|
|
|
|
|
return np.asarray(frame).astype(float)
|
|
|
|
|
|
|
|
|
|
def cfun(res):
|
|
|
|
|
def cfun(res: np.ndarray) -> np.ndarray:
|
|
|
|
|
return res / n
|
|
|
|
|
|
|
|
|
|
return self.__array_fun__([np.sum], axis, dtype, out, keepdims, None, where, [sfun], cfun)
|
|
|
|
|
|
|
|
|
|
@wraps(np.min)
|
|
|
|
|
def min(self, axis=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
@wraps(np.ndarray.min)
|
|
|
|
|
def min(self, axis=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.min], axis, None, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.moveaxis)
|
|
|
|
|
@@ -643,11 +671,11 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
raise NotImplementedError('moveaxis is not implemented')
|
|
|
|
|
|
|
|
|
|
@wraps(np.nanmax)
|
|
|
|
|
def nanmax(self, axis=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
def nanmax(self, axis=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.nanmax], axis, None, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.nanmean)
|
|
|
|
|
def nanmean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True, **kwargs):
|
|
|
|
|
def nanmean(self, axis=None, dtype=None, out=None, keepdims=False, *, where=True, **_):
|
|
|
|
|
dtype = dtype or float
|
|
|
|
|
|
|
|
|
|
def sfun(frame):
|
|
|
|
|
@@ -659,11 +687,11 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return self.__array_fun__([np.nansum, np.sum], axis, dtype, out, keepdims, None, where, (sfun, nfun), truediv)
|
|
|
|
|
|
|
|
|
|
@wraps(np.nanmin)
|
|
|
|
|
def nanmin(self, axis=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
def nanmin(self, axis=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.nanmin], axis, None, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.nansum)
|
|
|
|
|
def nansum(self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
def nansum(self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.nansum], axis, dtype, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.nanstd)
|
|
|
|
|
@@ -692,14 +720,15 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return self.__array_fun__([np.nansum, np.nansum, np.sum], axis, dtype, out, keepdims, None, where,
|
|
|
|
|
(sfun, s2fun, nfun), cfun)
|
|
|
|
|
|
|
|
|
|
@wraps(np.ndarray.flatten)
|
|
|
|
|
def flatten(self, *args, **kwargs):
|
|
|
|
|
return np.asarray(self).flatten(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
@wraps(np.reshape)
|
|
|
|
|
@wraps(np.ndarray.reshape)
|
|
|
|
|
def reshape(self, *args, **kwargs):
|
|
|
|
|
return np.asarray(self).reshape(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
@wraps(np.squeeze)
|
|
|
|
|
@wraps(np.ndarray.squeeze)
|
|
|
|
|
def squeeze(self, axes=None):
|
|
|
|
|
new = self.copy()
|
|
|
|
|
if axes is None:
|
|
|
|
|
@@ -713,15 +742,15 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
new.axes = ''.join(j for i, j in enumerate(new.axes) if i not in axes)
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
@wraps(np.std)
|
|
|
|
|
@wraps(np.ndarray.std)
|
|
|
|
|
def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=None, *, where=True):
|
|
|
|
|
return self.var(axis, dtype, out, ddof, keepdims, where=where, std=True)
|
|
|
|
|
|
|
|
|
|
@wraps(np.sum)
|
|
|
|
|
def sum(self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True, **kwargs):
|
|
|
|
|
@wraps(np.ndarray.sum)
|
|
|
|
|
def sum(self, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=True, **_):
|
|
|
|
|
return self.__array_fun__([np.sum], axis, dtype, out, keepdims, [initial], where)
|
|
|
|
|
|
|
|
|
|
@wraps(np.swapaxes)
|
|
|
|
|
@wraps(np.ndarray.swapaxes)
|
|
|
|
|
def swapaxes(self, axis1, axis2):
|
|
|
|
|
new = self.copy()
|
|
|
|
|
axes = new.axes
|
|
|
|
|
@@ -733,7 +762,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
new.axes = axes
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
@wraps(np.transpose)
|
|
|
|
|
@wraps(np.ndarray.transpose)
|
|
|
|
|
def transpose(self, *axes):
|
|
|
|
|
new = self.copy()
|
|
|
|
|
if not axes:
|
|
|
|
|
@@ -742,7 +771,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
new.axes = ''.join(ax if isinstance(ax, str) else new.axes[ax] for ax in axes)
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
@wraps(np.var)
|
|
|
|
|
@wraps(np.ndarray.var)
|
|
|
|
|
def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=None, *, where=True, std=False):
|
|
|
|
|
dtype = dtype or float
|
|
|
|
|
n = np.prod(self.shape) if axis is None else self.shape[axis]
|
|
|
|
|
@@ -761,15 +790,18 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return (s2 - s ** 2 / n) / (n - ddof)
|
|
|
|
|
return self.__array_fun__([np.sum, np.sum], axis, dtype, out, keepdims, None, where, (sfun, s2fun), cfun)
|
|
|
|
|
|
|
|
|
|
def asarray(self):
|
|
|
|
|
def asarray(self) -> np.ndarray:
|
|
|
|
|
return self.__array__()
|
|
|
|
|
|
|
|
|
|
def astype(self, dtype, *args, **kwargs):
|
|
|
|
|
@wraps(np.ndarray.astype)
|
|
|
|
|
def astype(self, dtype, *_, **__):
|
|
|
|
|
new = self.copy()
|
|
|
|
|
new.dtype = dtype
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
def block(self, y=None, x=None, c=None, z=None, t=None):
|
|
|
|
|
def block(self, y: int | Sequence[int] = None, x: int | Sequence[int] = None,
|
|
|
|
|
c: int | Sequence[int] = None, z: int | Sequence[int] = None,
|
|
|
|
|
t: int | Sequence[int] = None) -> np.ndarray:
|
|
|
|
|
""" returns 5D block of frames """
|
|
|
|
|
y, x, c, z, t = (np.arange(self.shape[i]) if e is None else np.array(e, ndmin=1)
|
|
|
|
|
for i, e in zip('yxczt', (y, x, c, z, t)))
|
|
|
|
|
@@ -778,15 +810,15 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
d[:, :, ci, zi, ti] = self.frame(cj, zj, tj)[y][:, x]
|
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
def copy(self):
|
|
|
|
|
def copy(self) -> View:
|
|
|
|
|
return View(self)
|
|
|
|
|
|
|
|
|
|
def data(self, c=0, z=0, t=0):
|
|
|
|
|
def data(self, c: int | Sequence[int] = 0, z: int | Sequence[int] = 0, t: int | Sequence[int] = 0) -> np.ndarray:
|
|
|
|
|
""" returns 3D stack of frames """
|
|
|
|
|
c, z, t = (np.arange(self.shape[i]) if e is None else np.array(e, ndmin=1) for i, e in zip('czt', (c, z, t)))
|
|
|
|
|
return np.dstack([self.frame(ci, zi, ti) for ci, zi, ti in product(c, z, t)])
|
|
|
|
|
|
|
|
|
|
def frame(self, c=0, z=0, t=0):
|
|
|
|
|
def frame(self, c: int = 0, z: int = 0, t: int = 0) -> np.ndarray:
|
|
|
|
|
""" returns single 2D frame """
|
|
|
|
|
c = self.get_channel(c)
|
|
|
|
|
c %= self.base.shape['c']
|
|
|
|
|
@@ -808,7 +840,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
else:
|
|
|
|
|
return f.copy()
|
|
|
|
|
|
|
|
|
|
def get_channel(self, channel_name):
|
|
|
|
|
def get_channel(self, channel_name: str | int) -> int:
|
|
|
|
|
if not isinstance(channel_name, str):
|
|
|
|
|
return channel_name
|
|
|
|
|
else:
|
|
|
|
|
@@ -818,14 +850,14 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return c[0]
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def get_config(file):
|
|
|
|
|
def get_config(file: Path | str) -> Any:
|
|
|
|
|
""" Open a yml config file """
|
|
|
|
|
loader = yaml.SafeLoader
|
|
|
|
|
loader.add_implicit_resolver(
|
|
|
|
|
r'tag:yaml.org,2002:float',
|
|
|
|
|
re.compile(r'''^(?:
|
|
|
|
|
[-+]?(?:[0-9][0-9_]*)\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|
|
|
|
|
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|
|
|
|
|
[-+]?([0-9][0-9_]*)\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|
|
|
|
|
|[-+]?([0-9][0-9_]*)([eE][-+]?[0-9]+)
|
|
|
|
|
|\.[0-9_]+(?:[eE][-+][0-9]+)?
|
|
|
|
|
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\.[0-9_]*
|
|
|
|
|
|[-+]?\\.(?:inf|Inf|INF)
|
|
|
|
|
@@ -834,7 +866,8 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
with open(file) as f:
|
|
|
|
|
return yaml.load(f, loader)
|
|
|
|
|
|
|
|
|
|
def get_czt(self, c, z, t):
|
|
|
|
|
def get_czt(self, c: int | Sequence[int], z: int | Sequence[int],
|
|
|
|
|
t: int | Sequence[int]) -> tuple[list[int], list[int], list[int]]:
|
|
|
|
|
czt = []
|
|
|
|
|
for i, n in zip('czt', (c, z, t)):
|
|
|
|
|
if n is None:
|
|
|
|
|
@@ -848,10 +881,10 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
stop = n.stop
|
|
|
|
|
czt.append(list(range(n.start % self.shape[i], stop, n.step)))
|
|
|
|
|
elif isinstance(n, Number):
|
|
|
|
|
czt.append([n % self.shape[i]]) # noqa
|
|
|
|
|
czt.append([n % self.shape[i]])
|
|
|
|
|
else:
|
|
|
|
|
czt.append([k % self.shape[i] for k in n])
|
|
|
|
|
return [self.get_channel(c) for c in czt[0]], *czt[1:]
|
|
|
|
|
return [self.get_channel(c) for c in czt[0]], *czt[1:3] # type: ignore
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def bioformats_ome(path: [str, Path]) -> OME:
|
|
|
|
|
@@ -872,7 +905,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
i = np.argsort(z[:, 1])
|
|
|
|
|
image.pixels.physical_size_z = np.nanmean(np.true_divide(*np.diff(z[i], axis=0).T)) * 1e6
|
|
|
|
|
image.pixels.physical_size_z_unit = 'µm'
|
|
|
|
|
except Exception:
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
pass
|
|
|
|
|
return ome
|
|
|
|
|
|
|
|
|
|
@@ -896,7 +929,7 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
cache[self.path] = self.fix_ome(ome)
|
|
|
|
|
return cache[self.path]
|
|
|
|
|
|
|
|
|
|
def is_noise(self, volume=None):
|
|
|
|
|
def is_noise(self, volume: ArrayLike = None) -> bool:
|
|
|
|
|
""" True if volume only has noise """
|
|
|
|
|
if volume is None:
|
|
|
|
|
volume = self
|
|
|
|
|
@@ -905,16 +938,19 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return 1 - corr[tuple([0] * corr.ndim)] < 0.0067
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def kill_vm():
|
|
|
|
|
def kill_vm() -> None:
|
|
|
|
|
JVM().kill_vm()
|
|
|
|
|
|
|
|
|
|
def new(self, *args, **kwargs):
|
|
|
|
|
def new(self, *args: Any, **kwargs: Any) -> View:
|
|
|
|
|
warnings.warn('Imread.new has been deprecated, use Imread.view instead.', DeprecationWarning, 2)
|
|
|
|
|
return self.view(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
def save_as_tiff(self, fname=None, c=None, z=None, t=None, split=False, bar=True, pixel_type='uint16', **kwargs):
|
|
|
|
|
def save_as_tiff(self, fname: Path | str = None, c: int | Sequence[int] = None, z: int | Sequence[int] = None,
|
|
|
|
|
t: int | Sequence[int] = None, split: bool = False, bar: bool = True, pixel_type: str = 'uint16',
|
|
|
|
|
**kwargs: Any) -> None:
|
|
|
|
|
""" saves the image as a tif file
|
|
|
|
|
split: split channels into different files """
|
|
|
|
|
fname = Path(fname)
|
|
|
|
|
if fname is None:
|
|
|
|
|
fname = self.path.with_suffix('.tif')
|
|
|
|
|
if fname == self.path:
|
|
|
|
|
@@ -944,7 +980,8 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
total=np.prod(shape), desc='Saving tiff', disable=not bar):
|
|
|
|
|
tif.save(m, *i)
|
|
|
|
|
|
|
|
|
|
def with_transform(self, channels=True, drift=False, file=None, bead_files=()):
|
|
|
|
|
def with_transform(self, channels: bool = True, drift: bool = False, file: Path | str = None,
|
|
|
|
|
bead_files: Sequence[Path | str] = ()) -> View:
|
|
|
|
|
""" returns a view where channels and/or frames are registered with an affine transformation
|
|
|
|
|
channels: True/False register channels using bead_files
|
|
|
|
|
drift: True/False register frames to correct drift
|
|
|
|
|
@@ -955,10 +992,12 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
view = self.view()
|
|
|
|
|
if file is None:
|
|
|
|
|
file = Path(view.path.parent) / 'transform.yml'
|
|
|
|
|
else:
|
|
|
|
|
file = Path(file)
|
|
|
|
|
if not bead_files:
|
|
|
|
|
try:
|
|
|
|
|
bead_files = Transforms.get_bead_files(view.path.parent)
|
|
|
|
|
except Exception:
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
if not file.exists():
|
|
|
|
|
raise Exception('No transform file and no bead file found.')
|
|
|
|
|
bead_files = ()
|
|
|
|
|
@@ -981,23 +1020,23 @@ class Imread(np.lib.mixins.NDArrayOperatorsMixin, ABC):
|
|
|
|
|
return view
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def split_path_series(path):
|
|
|
|
|
def split_path_series(path: Path | str) -> tuple[Path, int]:
|
|
|
|
|
if isinstance(path, str):
|
|
|
|
|
path = Path(path)
|
|
|
|
|
if isinstance(path, Path) and path.name.startswith('Pos') and path.name.lstrip('Pos').isdigit():
|
|
|
|
|
return path.parent, int(path.name.lstrip('Pos'))
|
|
|
|
|
return path, 0
|
|
|
|
|
|
|
|
|
|
def view(self, *args, **kwargs):
|
|
|
|
|
def view(self, *args: Any, **kwargs: Any) -> View:
|
|
|
|
|
return View(self, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class View(Imread, ABC):
|
|
|
|
|
def __init__(self, base, dtype=None):
|
|
|
|
|
def __init__(self, base: Imread, dtype: DTypeLike = None) -> None:
|
|
|
|
|
super().__init__(base.base, base.slice, base.shape, dtype or base.dtype, base.frame_decorator)
|
|
|
|
|
self.transform = base.transform
|
|
|
|
|
|
|
|
|
|
def __getattr__(self, item):
|
|
|
|
|
def __getattr__(self, item: str) -> Any:
|
|
|
|
|
if not hasattr(self.base, item):
|
|
|
|
|
raise AttributeError(f'{self.__class__} object has no attribute {item}')
|
|
|
|
|
return self.base.__getattribute__(item)
|
|
|
|
|
@@ -1010,21 +1049,25 @@ class AbstractReader(Imread, metaclass=ABCMeta):
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
@abstractmethod
|
|
|
|
|
def _can_open(path): # Override this method, and return true when the subclass can open the file
|
|
|
|
|
def _can_open(path: Path | str) -> bool:
|
|
|
|
|
""" Override this method, and return true when the subclass can open the file """
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
|
def __frame__(self, c, z, t): # Override this, return the frame at c, z, t
|
|
|
|
|
def __frame__(self, c: int, z: int, t: int) -> np.ndarray:
|
|
|
|
|
""" Override this, return the frame at c, z, t """
|
|
|
|
|
return np.random.randint(0, 255, self.shape['yx'])
|
|
|
|
|
|
|
|
|
|
def open(self): # Optionally override this, open file handles etc.
|
|
|
|
|
""" filehandles cannot be pickled and should be marked such by setting do_not_pickle = 'file_handle_name' """
|
|
|
|
|
def open(self) -> None:
|
|
|
|
|
""" Optionally override this, open file handles etc.
|
|
|
|
|
filehandles cannot be pickled and should be marked such by setting do_not_pickle = 'file_handle_name' """
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
def close(self): # Optionally override this, close file handles etc.
|
|
|
|
|
def close(self) -> None:
|
|
|
|
|
""" Optionally override this, close file handles etc. """
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
def __init__(self, path, dtype=None, axes=None):
|
|
|
|
|
def __init__(self, path: Path | str | Imread | Any = None, dtype: DTypeLike = None, axes: str = None) -> None:
|
|
|
|
|
if isinstance(path, Imread):
|
|
|
|
|
return
|
|
|
|
|
super().__init__()
|
|
|
|
|
@@ -1114,7 +1157,8 @@ class AbstractReader(Imread, metaclass=ABCMeta):
|
|
|
|
|
for channel in pixels.channels if channel.excitation_wavelength_quantity]
|
|
|
|
|
self.laserpowers = try_default(lambda: [(1 - channel.light_source_settings.attenuation,)
|
|
|
|
|
for channel in pixels.channels], [])
|
|
|
|
|
self.filter = try_default(lambda: [find(instrument.filter_sets, id=channel.filter_set_ref.id).model
|
|
|
|
|
self.filter = try_default( # type: ignore
|
|
|
|
|
lambda: [find(instrument.filter_sets, id=channel.filter_set_ref.id).model
|
|
|
|
|
for channel in image.pixels.channels], None)
|
|
|
|
|
self.pxsize_um = None if self.pxsize is None else self.pxsize.to(self.ureg.um).m
|
|
|
|
|
self.exposuretime_s = [None if i is None else i.to(self.ureg.s).m for i in self.exposuretime]
|
|
|
|
|
@@ -1157,7 +1201,7 @@ class AbstractReader(Imread, metaclass=ABCMeta):
|
|
|
|
|
sigma = np.hstack(sigma)
|
|
|
|
|
sigma[sigma == 0] = 600 * ureg.nm
|
|
|
|
|
sigma /= 2 * self.NA * self.pxsize
|
|
|
|
|
self.sigma = sigma.magnitude.tolist()
|
|
|
|
|
self.sigma = sigma.magnitude.tolist() # type: ignore
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
self.sigma = [2] * self.shape['c']
|
|
|
|
|
if not self.NA:
|
|
|
|
|
@@ -1176,11 +1220,11 @@ class AbstractReader(Imread, metaclass=ABCMeta):
|
|
|
|
|
self.track, self.detector = zip(*[[int(i) for i in p.findall(find(
|
|
|
|
|
self.ome.images[self.series].pixels.channels, id=f'Channel:{c}').detector_settings.id)[0]]
|
|
|
|
|
for c in range(self.shape['c'])])
|
|
|
|
|
except Exception:
|
|
|
|
|
except Exception: # noqa
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
def main() -> None:
|
|
|
|
|
parser = ArgumentParser(description='Display info and save as tif')
|
|
|
|
|
parser.add_argument('file', help='image_file')
|
|
|
|
|
parser.add_argument('out', help='path to tif out', type=str, default=None, nargs='?')
|
|
|
|
|
@@ -1209,4 +1253,4 @@ def main():
|
|
|
|
|
f.write(im.ome.to_xml())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .readers import *
|
|
|
|
|
from .readers import * # noqa
|
|
|
|
|
|